International Journal of Engineering, Science and Mathematics

Vol. 9 Issue 1, January 2020,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

LINEAR PRESERVERS OF MAJORIZATION ON ℓ^{∞}

MOHAMMED NOUR A.RABIH* MALIK HASSAN** AHMED TAHA***

ABSTRACT: In this paper we give a notation of majorization on ℓ^{∞} and linear Preservers of majorization on closed linear subspace c of Banach space . We extend Df of two functions f_1 , f_2 wen D is a bounded linear operator also, Keywords: we extend some results of [4] abut f, g to several Linear Preservers functions majorization, stochastic operators Banach space. Copyright © 2019 International Journals of Multidisciplinary Research Academy. All rights reserved.

Author correspondence:

¹Department of Mathematics –College of Science - University of Bakht Er-ruda-Eddwaim -Sudan.

²Department of Mathematics –College of Science & Arts in Oklat Alskoor –Al Qassim University –Saudia Arabia.

³Department of Mathematics –College of Education University of Holy Quran and Islamic Science –Khartoum, Sudan

INTRODUCTION:

Two vectors $x, y \in \mathbb{R}^n$, the set of all n —tuples of real numbers, x is said to be majorized by y, and is denoted by x < y, whenever $\sum_{i=1}^k x_i^{\downarrow} \le \sum_{i=1}^k y_i^{\downarrow}$, (k = 1, 2, ..., n-1) and $\sum_{i=1}^k x_i^{\downarrow} = \sum_{i=1}^k y_i^{\downarrow}$. Here x_i^{\downarrow} denotes the ith largest number between the components of a vector $x \in \mathbb{R}^n$, [5].

It is a well-known fact that for $x, y \in \mathbb{R}^n$, x < y if and only if there exists a doubly stochastic $n \times n$ matrix D such that x = Dy (see, for example, [1, 2]). Recall that an $n \times n$ matrix $D = (d_{ij})$ is called doubly stochastic if $d_{ij} \geq 0$, for all i, j = 1, ..., n, and each of its row sums and column sums are equal to 1.

In finite dimensions, a linear map $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to preserve majorization if whenever $x \prec y$, for $x, y \in \mathbb{R}^n$, then $Tx \prec Ty$. It is known that a linear map $T: \mathbb{R}^n \to \mathbb{R}^n$ preserves majorization if and only if T has one of the following forms.

- (i) T(x) = tr(x)a, for some $a \in \mathbb{R}^n$.
- (ii) $T(x) = \beta P(x) + \gamma t r(x) e$ for some $\beta, \gamma \in \mathbb{R}$ and a permutation

$$P: \mathbb{R}^n \to \mathbb{R}^n$$

In this paper we prove that $D(f_1 + f_2) = \sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} d_{mn} (f_1 + f_2)(n)) e_m$.

Where $\sum_{n=1}^{\infty}d_{mn}=1$, and $\sum_{m=1}^{\infty}d_{mn}=1$ $\forall m,n\in\mathbb{N}$, and we prove that following conditions for f_r , $g_r\in c$ are equivalent.

- (i) $f_r < g_r$ and $g_r < f_r$.
- (ii) $f_r = Pg_r$, for some $P \in \mathcal{P}$.

Now we discus a Majorization on ℓ^{∞} and its closed linear subspace . Let ℓ^{∞} be the Banach space of all bounded real sequences [4], with the norm

 $\forall f \in \ell^{\infty}$, $||f||_{\infty} = \sup_{n \in \mathbb{N}} |f(n)|$. Each $f \in \ell^{\infty}$ can be represented in the form $\sum_{n=1}^{\infty} f(n)_{e_n}$, where the series is understood to be convergent in the weak*-topology. Here

 $e_n \in \ell^{\infty}$ denotes the sequence $e_n(j) = 0$ for all $j \neq n$, and $e_n(n) = 1$. Following the same procedure as that of [3], we use doubly stochastic operators [1], on ℓ^{∞} to define. The majorization relation on this space. Hence it is necessary first to define these operators on ℓ^{∞} . We recall that an operator $D_0 \colon \ell^1 \to \ell^1$ is called a doubly stochastic operator on ℓ^1 if it is positive, i.e. $D_0 f \geq 0$ for each non-negative $f \in \ell^1$, and

$$\forall n \in \mathbb{N}, \sum_{m=1}^{\infty} D_0 e_n(m) = 1, \qquad \forall m \in \mathbb{N}, \sum_{n=1}^{\infty} D_0 e_n(m) = 1.$$

The set of all doubly stochastic operators on ℓ^1 is denoted by $\mathcal{D}S(\ell^1)$. We refer to [3, 4], for more details.

Definition .1 A bounded linear operator $D: \ell^{\infty} \to \ell^{\infty}$ is called a doubly stochastic operator [1], if there exists a doubly stochastic operator $D_0 \in \mathcal{DS}(\ell^1)$, such that $D = D_0^*$, i.e. for every $f \in \ell^{\infty}$ and $g \in \ell^1$, $\langle Df, g \rangle = \langle f, D_0 g \rangle$, where

 $\langle \cdot, \cdot \rangle : \ell^{\infty} \times \ell^{1} \to \mathbb{R}$ denotes the dual pairing between ℓ^{1} and its dual space, ℓ^{∞} . The set of all doubly stochastic operators on ℓ^{∞} is denoted by $\mathcal{DS}(\ell^{\infty})$.

Lemma .2 Let $D \in \mathcal{DS}(\ell^{\infty})$. Then there exists a family of non-negative real numbers $\{d_{mn} \mid m, n \in \mathbb{N}\}$ with

$$\forall n \in \mathbb{N}, \sum_{n=1}^{\infty} d_{mn} = 1 \quad and \quad \forall m \in \mathbb{N}, \sum_{m=1}^{\infty} d_{mn} = 1$$
 (1)

and such that for all $f = \sum_{n=1}^{\infty} f(n)e_n$ in ℓ^{∞} ,

$$Df = \sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} d_{mn} f(n)) e_m.$$

Proof. Suppose $D_0 \in \mathcal{D}S(\ell^1)$ satisfies $D_0^* = D$ and let $d_{mn} := (D_0 e_m)(n)$, for all $m, n \in \mathbb{N}$. Then clearly the family $\{d_{mn} \mid m, n \in \mathbb{N}\}$ satisfies (27). Now for $f = \sum_{n=1}^{\infty} f(n) e_n \in \ell^{\infty}$ and $m \in \mathbb{N}$,

$$\langle Df, e_m \rangle = \langle f, D_0 e_m \rangle = \sum_{n=1}^{\infty} f(n)(D_0 e_m)(n) = \sum_{n=1}^{\infty} d_{mn} f(n).$$

Therefore, $Df = \sum_{m=1}^{\infty} \langle Df, e_m \rangle e_m = \sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} d_{mn} f(n)) e_m$. The following lemma which, in some respect, is the converse of the previous lemma, furnishes us with a method to construct doubly stochastic operators on ℓ^{∞} .

Corollary .3 Let $D \in \mathcal{D}S(\ell^{\infty})$. Then there exists a family of non-negative real numbers $\{d_{mn} \mid m, n \in \mathbb{N}\}$ with $\forall m, n \in \mathbb{N}$, $\sum_{n=1}^{\infty} d_{mn} = 1$, and

$$\sum_{m=1}^{\infty} d_{mn} = 1 \quad ,$$

and such that for all $f_1 + f_2 = \sum_{n=1}^{\infty} (f_1 + f_2)(n)e_n$ in ℓ^{∞} ,

$$D(f_1 + f_2) = \sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} d_{mn} (f_1 + f_2)(n)) e_m.$$

Proof. Suppose $D_0 \in \mathcal{D}S(\ell^1)$ satisfies $D_0^* = D$ and let $d_{mn} := (D_0 e_m)(n)$, for all $m, n \in \mathbb{N}$. Then clearly the family $\{d_{mn} \mid m, n \in \mathbb{N}\}$ satisfies (1). Now for $f_1 + f_2 = \sum_{n=1}^{\infty} (f_1 + f_2)(n) e_n \in \ell^{\infty}$ and $m \in \mathbb{N}$,

$$\langle D(f_1+f_2), e_m \rangle = \langle f_1+f_2, D_0 e_m \rangle = \sum_{n=1}^{\infty} (f_1+f_2)(n)(D_0 e_m)(n) = \sum_{n=1}^{\infty} d_{mn}(f_1+f_2)(n).$$

Therefore,

$$D(f_1 + f_2) = \sum_{m=1}^{\infty} \langle D(f_1 + f_2), e_m \rangle e_m = \sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} d_{mn} (f_1 + f_2)(n) \right) e_m.$$

Lemma .4 Let $\{d_{mn} \mid m, n \in \mathbb{N}\}$ be a family of non-negative real numbers which satisfies the two relations of (26), in Lemma.2. Then there exists a doubly stochastic operator $D: \ell^{\infty} \to \ell^{\infty}$ which is represented by the infinite matrix (d_{mn}) [1], in the sense that

$$\forall f \in \ell^{\infty}, \forall m \in \mathbb{N}, Df(m) = \sum_{n=1}^{\infty} d_{mn}f(n).$$

Proof. According to [3], Proposition 2.6, there exists a doubly stochastic operator $D_0: \ell^1 \to \ell^1$ such that, for all $m, n \in \mathbb{N}$, $D_0 e_m(n) = d_{mn}$. Let $D: D_0^* \in \mathcal{DS}(\ell^\infty)$. Then, for all $f \in \ell^\infty$ and all $m \in \mathbb{N}$,

$$\langle Df, e_m \rangle = \langle f, D_0 e_m \rangle = \sum_{n=1}^{\infty} d_{mn} f(n),$$

which proves our claim. According to Lemmas.2 and.4, it is worth noting that, unlike general linear operators on ℓ^{∞} , a doubly stochastic operator on this space is completely determined by its action on the set $\{e_n | n \in \mathbb{N}\}$. We are now ready to define the majorization relation on ℓ^{∞} .

Definition.5 For f and g in ℓ^{∞} , f is said to be majorized by g(or, g majorizes f), and is denoted by f < g. [4], if there exists $D \in \mathcal{DS}(\ell^{\infty})$ for which f = Dg. For a one-to-one map $\sigma: \mathbb{N} \to \mathbb{N}$, let $P\sigma: \ell^{\infty} \to \ell^{\infty}$ be defined for each $f \in \ell^{\infty}$ by

$$P_{\sigma}f = \sum_{n=1}^{\infty} f(n)e_{\sigma(n)}.$$

Then P_{σ} is a well-defined bounded linear operator on ℓ^{∞} . If, moreover, σ is onto then P_{σ} is called a permutation. The set of all permutations on ℓ^{∞} is denoted by P. Note that each permutation $P_{\sigma} \in P$ is invertible with $P_{\sigma}^{-1} = P_{\sigma^{-1}}$. Clearly, every permutation is a doubly stochastic operator. Therefore, if P is a permutation on ℓ^{∞} then for each $f \in \ell^{\infty}$, Pf < f. In order to construct other examples for majorization on ℓ^{∞} , we use the following notation. Let $n \in \mathbb{N}$ and suppose $f_0: \{1, \ldots, n\} \to \mathbb{R}$ is an element of \mathbb{R}^n . Then for each $f \in \ell^{\infty}$, we use (f_0, f)

to denote a sequence in ℓ^{∞} which is defined as follows.

$$\forall j \in \mathbb{N}, (f_0, f)(j) = \begin{cases} f_0(j) & \text{if} \quad j \le n, \\ f(j-n) & \text{if} \quad f > n. \end{cases}$$

Theorem .6 For f and g in ℓ^{∞} , suppose f < g.

Then inf $g \le \inf f \le \sup f \le \sup g$ and $\lim \inf g(n) \le \lim \inf f(n) \le \lim \sup f(n) \le \lim \sup g(n)$.

PROOF. Let g be non-zero and suppose $D: \ell^{\infty} \to \ell^{\infty}$ is a doubly stochastic operator which satisfies f = Dg. The first set of inequalities are clear. To prove the second inequalities, we first note that f < g if and only if f + a < g + a, for each $a \in \mathbb{R}$ considered as a constant sequence. Hence, using a translation, if necessary, we may assume that $\lim \inf g(n) \le 0 \le \limsup g(n)$. Let $\alpha:=\limsup g(n)$. For $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $g(n) < \alpha + \frac{\epsilon}{2}$, for all $n \ge \mathbb{N}$. Let $\{d_{ij} \mid i,j \in \mathbb{N}\}$ be the family of nonnegative real numbers corresponding to D, introduced in Lemma(4.2.2). Then there exists $M \in \mathbb{N}$ such that for all

 $m \ge M$, $\sum_{j=1}^{N} d_{mj} < \frac{\epsilon}{2\|g\|_{\infty}}$. Therefore, for any $m \ge M$,

$$f(m) = \sum_{j=1}^{\infty} d_{mj} g(j) = \sum_{j=1}^{N} d_{mj} g(j) + \sum_{j=N+1}^{N} d_{mj} g(j)$$

$$\leq \sum_{j=1}^{N} d_{mj} \|g\|_{\infty} + \sum_{j=N+1}^{\infty} d_{mj} \left(\alpha + \frac{\epsilon}{2}\right) < \alpha + \epsilon.$$

Hence $\limsup f(n) \leq \limsup g(n)$.

The inequalitylim $inf\ g(n) \le \liminf f(n)$ follows easily from the previous argument and the fact that -f = D(-g). We continue this section by considering the majorization relation on these closed subspaces. Let e denote the constant sequence. Then the sets $\{e_N | n \in \mathbb{N}\}$ and $\{e_N | n \in \mathbb{N}\} \cup \{E\}$ form, respectively, Schauder bases for c_0 and c. For $f \in c$, we use the notation $\lim f$ in place of $\lim_{n\to\infty} f(n)$. Then every $f \in c$ has the representation

 $f=(\lim_{n\to\infty} e)+\sum_{n=1}^\infty (f(n)-\lim_{n\to\infty} e)$, where the series converges in the norm topology. The next lemma follows directly from Theorem.7.

Lemma .7 For $f, g \in c$, if f < g then $\lim_{x \to a} f = \lim_{x \to a} g$.

there are sequences $f, g \in \ell^{\infty}$ with f < g and

 $g \prec f$ without, necessarily, each being a permutation of the other. However, in the spaces c and c_{∞} this does not happen. To see this fact, we need the following lemma whose proof is, in some respect, similar to Theorem 3.5 of [3]. However, for the sake of completeness, we bring here its proof. Let us first introduce some notations. For a real number a,let $\phi_a, \psi_a \colon \mathbb{R} \to \mathbb{R}$ be the non-negative convex functions defined, for each $x \in \mathbb{R}$, by

$$\phi_a(x) = max\{x - a, 0\}, \quad \psi_a(x) = -min\{a - x, 0\}.$$

Then, for each $f \in c_0$ and all a > 0 and b < 0, we have

$$\sum_{n\in\mathbb{N}}\phi_a\big(f(n)\big)=\sum_{n\in\mathbb{N}}\phi_a\big(f^+(n)\big),\quad \sum_{n\in\mathbb{N}}\psi_a\big(f(n)\big)=\sum_{n\in\mathbb{N}}\phi_{|b|}\big(f^-(n)\big),$$

where $f^+ = max\{f, 0\}$ and $f^- = -min\{f, 0\}$. We recall that for a function

 $f: \mathbb{N} \to \mathbb{R}$, the support of f, denoted by supp(f), is the set $\{n \in \mathbb{N} | f(n) \neq 0\}$.

For a non-negative $f \in c_0$, let $\{A_n(f)|n \in \mathbb{N}\}$ be a family of subsets of supp(f) defined, inductively, as follows:

$$A_1(f) = \{k \in supp(f) | f(k) = ||f||_{\infty} \},$$

and for each $n \geq 2$,

$$A_n(f) = \left\{ k \in supp(f) \middle| f(k) = \left\| f - \sum_{j \in \bigcup_{i=1}^{n-1} A_i(f)} f(j) e_j \right\|_{\infty} \right\}.$$

Clearly $A_n(f) \cap A_m(f) = \emptyset$, for n = m, and $supp(f) = \bigcup_{n \in \mathbb{N}} A_n(f)$. Let

 f_n denote the value of f on the set $A_n(f)$, if this set is non-empty, and define it equal to 0, if $A_n(f) = \emptyset$. If $A_n(f) = \emptyset$, for some $n \in \mathbb{N}$, then $f_1 > f_2 > \cdots > f_n$. If $A_n(f) = \emptyset$ then $A_m(f) = \emptyset$, for all $m \ge n$.

Again, for a non-negative $f \in c_0$, let f_{\downarrow} denote the rearrangement of f in the decreasing order. Therefore there exists a permutation $P_{\sigma} \in P$ for which $f_{\downarrow} = P_{\sigma}f$ and in such a way that $f_{\downarrow}(n) \geq f_{\downarrow}(n+1)$, for each $n \in \mathbb{N}$. Clearly supp(f) and $sup(f_{\downarrow})$ are in one-to-one correspondence. The same is true for the sets $A_n(f)$ and $A_n(f_{\downarrow})$, for all

 $n \in \mathbb{N}$. For each a > 0 we also have,

$$\sum_{n\in\mathbb{N}}\phi_a\big(f_{\downarrow}(n)\big)=\sum_{n\in\mathbb{N}}\phi_a\left(f\big(\sigma^{-1}(n)\big)\right)=\sum_{m\in\mathbb{N}}\phi_a\big(f(m)\big).$$

Lemma .8 For $f, g \in c_0$, if $f \prec g$ and

$$\forall a > 0, \qquad \sum_{n \in \mathbb{N}} \phi_a(f(n)) = \sum_{n \in \mathbb{N}} \phi_a(g(n)),$$

$$\forall a > 0, \qquad \sum_{n \in \mathbb{N}} \psi_a(f(n)) = \sum_{n \in \mathbb{N}} \psi_a(g(n)),$$
 (2)

then there exists a permutation $P \in \mathcal{P}$ such that f = Pg.

Proof. We may assume that g is non-zero. By the first equation of (2), for each a > 0 we have

$$\sum_{n\in\mathbb{N}} \phi_a\big(f_{\downarrow}^+(n)\big) = \sum_{n\in\mathbb{N}} \phi_a\big(f^+(n)\big) = \sum_{n\in\mathbb{N}} \phi_a\big(g^+(n)\big) = \sum_{n\in\mathbb{N}} \phi_a\big(g_{\downarrow}^+(n)\big)$$

Since this is true for each a > 0, it is easily seen that $A_n(f_{\downarrow}^+) = A_n(g_{\downarrow}^+)$. Therefore, for each $n \in \mathbb{N}$, there is a one-to-one correspondence θ_n between the sets $A_n(f^+)$ and $A_n(g^+)$, from which it follows that there is also a bijection

 θ^+ : $supp(g^+) \to supp(f^+)$ which maps $A_n(g^+)$ to $A_n(f^+)$, for each $n \in \mathbb{N}$ with $A_n(f^+) \neq \emptyset$.

Let $D: c \to c$ be a doubly stochastic operator with f = Dg. We first show that

$$\forall m \in supp(f^+), \qquad \sum_{n \in supp(g^+)} De_n(m) = 1, \tag{3}$$

and

$$\forall m \in supp(g^+), \qquad \sum_{n \in supp(f^+)} De_n(m) = 1, \tag{4}$$

First suppose $m \in A_1(f^+)$. If $\lambda := \sum_{n \in A_1(g^+)} De_n(m) < 1$, then

$$0 < f_1 = f(m) = \sum_{n=1}^{\infty} De_n(m)g(n) = \sum_{n \in A_1(g^+)} De_n(m)g_1 + \sum_{n \notin A_1(g^+)} De_n(m)g(n)$$

$$\leq \lambda g_1 + (1 - \lambda)g_2 < g_1.$$

This contradicts the fact that $f_1 = g_1$. Hence $\sum_{n \in A_1(g^+)} De_n(m) = 1$ and therefore $\sum_{n \in supp (g^+)} De_n(m) = 1$. Furthermore, by the equations

$$|A_1(g^+)| = |A_1(f^+)| = \sum_{m \in A_1(f^+)} \sum_{n \in A_1(g^+)} De_n(m) = \sum_{n \in A_1(g^+)} \sum_{m \in A_1(f^+)} De_n(m),$$

Where for a set A, |A| denotes its cardinal number, we have also $\sum_{m \in A_1(g^+)} De_n(m) = 1$, for each $n \in A_1(g^+)$, whence $De_n(m) = 0$, for each $m \notin A_1(f^+)$ and for all $n \in A_1(g^+)$.

Using induction, a similar argument shows that, for each $k \in \mathbb{N}$ with $A_k(f^+) = \emptyset$, we have

$$\forall m \in A_k(f^+), \qquad \sum_{n \in A_k(g^+)} De_n(m) = 1,$$
 $\forall m \in A_k(g^+), \qquad \sum_{m \in A_k(f^+)} De_n(m) = 1.$

This proves (3) and (4). The second equation of (2) and similar arguments yield a bijection $\theta^-: supp(g^-) \to supp(f^-)$ which maps $A_n(g^-)$ to $A_n(f^-)$, for all $n \in \mathbb{N}$ with non-empty $A_n(f^-)$. We also have the following relations.

$$\forall m \in supp(f^{-}), \sum_{n \in supp(g^{-})} De_n(m) = 1, \tag{5}$$

$$\forall m \in supp(g^{-}), \sum_{n \in supp(f^{-})} De_n(m) = 1.$$
 (6)

For a sequence $f \in c_0$, if $N(f) := \mathbb{N} \setminus supp(f)$ then (3), (4), (5), and (6) imply that

$$\forall m \in N(f), \quad \forall n \notin N(g), De_n(m) = 0,$$

$$\forall m \notin N(f), \quad \forall n \in N(g), De_n(m) = 0.$$

This shows that

$$\sum_{m \in N(f)} 1 = \sum_{m \in N(f)} \sum_{n \in N(f)} De_n(m) = \sum_{n \in N(g)} \sum_{m \in N(f)} De_n(m) = \sum_{n \in N(g)} 1.$$

Thus |N(f)| = |N(g)|. Hence there exists a bijection $\theta^0: N(g) \to N(f)$. Nowwe can define a bijection $\theta: \mathbb{N} \to \mathbb{N}$ by

$$\forall n \in \mathbb{N}, \qquad \theta(n) = \begin{cases} \theta^{+}(n) \ n \in supp(g^{+}), \\ \theta^{0}(n) \ n \in N(g), \\ \theta^{-}(n) \ n \in supp(g^{-}). \end{cases}$$

Let $P = P_{\theta}$ be the corresponding permutation on c. Then, for each $m \in \mathbb{N}$,

$$Pg(m) = \left(\sum_{n=1}^{\infty} g(n)e_{\theta(n)}\right)(m) = g(\theta^{-1}(m)).$$

If $m \in supp(f^+)$, then $m \in A_k(f^+)$, for some $k \in \mathbb{N}$ and $\theta^{-1}(m) \in A_k(g^+)$. Hence $g(\theta^{-1}(m)) = g_k = f_k = f(m)$. Thus we have f(m) = Pg(m), for each $m \in supp(f^+)$. Similar arguments are true for $m \in N(f)$ and $m \in supp(f^-)$. There fore f = Pg.

Theorem .9 The following conditions for f, $g \in c$ are equivalent.

- (i) f < g and g < f.
- (ii) f = Pg, for some $P \in \mathcal{P}$.

Proof. (i) \Rightarrow (ii) First assume that f and g are in c_0 . Let $D, D' \in \mathcal{DS}$ satisfy f = Dg and = D'f. Since for each $a \in \mathbb{R}$, the function ϕ_a is convex, using Jensen's inequality, we obtain that

$$\phi_a(f(n)) \leq \sum_{m \in \mathbb{N}} De_m(n)\phi_a(g(m)),$$

for each $n \in \mathbb{N}$. Specially, for a > 0 we will have

$$\sum_{n\in\mathbb{N}} \phi_a(f(n)) \le \sum_{n\in\mathbb{N}} \sum_{m\in\mathbb{N}} De_m(n)\phi_a(g(m)) = \sum_{m\in\mathbb{N}} \sum_{n\in\mathbb{N}} De_m(n)\phi_a(g(m))$$
$$= \sum_{m\in\mathbb{N}} \phi_a(g(m)).$$

Similarly,

$$\sum_{m \in \mathbb{N}} \phi_a \big(g(m) \big) \le \sum_{n \in \mathbb{N}} \phi_a \big(g(n) \big).$$

Hence $\sum_{m\in\mathbb{N}} \phi_a(g(m)) = \sum_{n\in\mathbb{N}} \phi_a(g(n))$. A similar argument shows that $\sum_{m\in\mathbb{N}} \psi_a(g(m)) = \sum_{n\in\mathbb{N}} \psi_a(g(n))$, for each a < 0. Thus Lemma. Simplies that there is a permutation P for which f = Pg. Now for the general case of

 $f,g \in c$, if f < g and g < f then $\lim f = \lim g$ and $f - (\lim f)e < g - (\lim g)e$ and $g - (\lim g)e < f - (\lim f)e$. By the previous argument, there is a permutation P such that $f - (\lim f)e = P(g - (\lim g)e)$, whence f = Pg.

(ii) \Rightarrow (i) Clear. For $f,g \in \ell^{\infty}$, we use the notation $f \sim g$ whenever f < g and g < f. According to the previous theorem, for $f,g \in c, f \sim g$ if and only if f = Pg for some permutation $P \in \mathcal{P}$.

Corollary .10 The following conditions for f_r , $g_r \in c$ are equivalent.

- (i) $f_r < g_r$ and $g_r < f_r$.
- (ii) $f_r = Pg_r$, for some $P \in \mathcal{P}$.

Proof. (i) \Rightarrow (ii) First assume that f_r and g are in c_0 . Let

$$D_1 + D_2, (D_1 + D_2)' \in (D_1 + D_2)S$$

satisfy $f_r = (D_1 + D_2)g_r$ and $= (D_1 + D_2)'f_r$. Since for each $a \in \mathbb{R}$, the function ϕ_a is convex, using Jensen's inequality, we obtain that

$$\phi_{a}(f_{r}(n)) \leq \sum_{m \in \mathbb{N}} (D_{1} + D_{2})e_{m}(n)\phi_{a}(g_{r}(m)),$$

for each $n \in \mathbb{N}$. Specially, for a > 0 we will have

$$\sum_{n\in\mathbb{N}} \phi_a(f_r(n)) \le \sum_{n\in\mathbb{N}} \sum_{m\in\mathbb{N}} (D_1 + D_2) e_m(n) \phi_a(g_r(m))$$

$$= \sum_{m\in\mathbb{N}} \sum_{n\in\mathbb{N}} (D_1 + D_2) e_m(n) \phi_a(g_r(m)) = \sum_{m\in\mathbb{N}} \phi_a(g_r(m)).$$

Similarly,

$$\sum_{m\in\mathbb{N}} \phi_a \big(g_r(m) \big) \le \sum_{n\in\mathbb{N}} \phi_a \big(g_r(n) \big).$$

Hence $\sum_{m\in\mathbb{N}} \phi_a \big(g_r(m)\big) = \sum_{n\in\mathbb{N}} \phi_a \big(g_r(n)\big)$. A similar argument shows that $\sum_{m\in\mathbb{N}} \psi_a \big(g_r(m)\big) = \sum_{n\in\mathbb{N}} \psi_a \big(g_r(n)\big)$, for each a<0. Thus Lemma .8 implies that there is a permutation P for which $f_r=Pg_r$. Now for the general case of $f_r,g_r\in c$, if $f_r\prec g_r$ and $g_r\prec f_r$ then $\lim f_r=\lim g_r$ and $f_r-(\lim f_r)e\prec g_r-(\lim g_r)e$ and $g_r-(\lim g_r)e$

 $f_r-(\lim f_r)e$. By the previous argument, there is a permutation P such that $f_r-(\lim f_r)e=P(g_r-(\lim g_r)e)$, whence $f_r=Pg_r$.

(ii) \Rightarrow (i) Clear. For $f_r, g_r \in \ell^{\infty}$, we use the notation $f_r \sim g_r$ whenever $f_r < g_r$ and $g_r < f_r$. According to the previous theorem, for $f_r, g_r \in c$, $f_r \sim g_r$ if and only if $f_r = Pg_r$ for some permutation $P \in \mathcal{P}$.

In this part of this paper we obtain a characterization of linear preservers of the majorization relation on c. As we will see, the restriction of a linear preserver of majorization to the linear subspace c_0 of c is a majorization preserver on this subspace. Therefore, in order to characterize the structure of these maps on c, we first obtain the same characterization on c_0 . Finally, using this result, we determine the structure of these maps on c, [2].

Definition .11 A bounded linear map $T: \ell^{\infty} \to \ell^{\infty}$ is called a majorization preserver on ℓ^{∞} if for each $f, g \in \ell^{\infty}$, f < g implies that Tf < Tg, [4]. We denote the set of all linear majorization preservers $T: \ell^{\infty} \to \ell^{\infty}$ by $\mathcal{M}_{Pr}(\ell^{\infty})$. The set of all linear majorization preservers on c and c_0 are denoted, respectively, by $\mathcal{M}_{Pr}(c)$ and $\mathcal{M}_{Pr}(c_0)$. For brevity, in what follows, we use the word preserver instead of majorization preserver.

Example .12 For any $h \in c$, let T = Th be the bounded linear operator on c, defined by $Tf = (\lim_{n \to \infty} f)h$. Then f < g, in c, implies that Tf = Tg. Thus T is a preserver.

For a bounded linear map $T: c \to c$, it is easily seen that for each $m \in N$,

$$\sum_{n=1}^{\infty} |T_{e_n}(m)| \le ||T||. \tag{7}$$

Theorem .13 For each $T \in \mathcal{M}_{Pr}(c)$ the following statements hold.

- (i) $T(c_0) \subseteq c_0$, and therefore $T|_{c_0} \in \mathcal{M}_{Pr}(c_0)$.
- (ii) If $\lim Te = \alpha$, then $\lim Tf = \alpha \lim_{n \to \infty} f$, for each $f \in c$.

Proof. (i) Let $T \in \mathcal{M}_{Pr}(c)$ be non-zero. It suffices to show that $Te_n \in c_0$, for all $n \in \mathbb{N}$. Suppose, on the contrary, there exists $n_0 \in \mathbb{N}$ with

 $l:=\lim Te_{n_0} \neq 0$. Then, since $e_n < e_{n_0}$, by Lemma .7, $\lim Te_n = l$, for each

 $n \in \mathbb{N}$. We first choose $N \in \mathbb{N}$ with $N > \frac{2\|T\|}{|l|}$, and then $m_0 \in \mathbb{N}$ such that

 $|Te_n(m_0)| > \frac{|l|}{2}$, for each n = 1,...,N. Now, using (7), we obtain the following contradiction.

$$||T|| \ge \sum_{n=1}^{\infty} |Te_n(m_0)| \ge \sum_{n=1}^{N} |Te_n(m_0)| \ge N \frac{|l|}{2} > \frac{2|T|}{|l|} \cdot \frac{|l|}{2} = ||T||.$$

(ii) For $f \in c$, using the previous part, $T(f - (\lim f)e) \in c_0$. Therefore,

 $\lim Tf = \lim T((\lim f)e) + \lim T(f - (\lim f)e) = (\lim f) \lim Te$. According to the previous theorem, if $T: c \to c$ is a linear preserver then the restriction of T to the closed subspace c_0 of c is an operator on this subspace, and therefore a linear preserver on c_0 . Hence we first obtain the structure of an operator $T \in \mathcal{M}_{Pr}(c_0)$. To this end, we need the following two lemmas.

Lemma .14 Let $T \in \mathcal{M}_{P_T}(c_0)$. Then for any $m \in \mathbb{N}$ there is at most one $n \in \mathbb{N}$ with $Te_n(m) \neq 0$.

Proof. Suppose that, on the contrary, there exists m_0 and two distinct n_1, n_2 in \mathbb{N} , for which $a := Te_{n_1}(m_0)$ and $b := Te_{n_2}(m_0)$ are both non-zero. Let $F \subset \mathbb{N}$ be given by

$$F = \{m \in \mathbb{N} | Te_{n_1}(m) = a\}.$$

Then $F \neq \emptyset$. Moreover, since $Te_{n_1} \in c$, F is finite. For $n \neq n_1$, and for all

 $\alpha, \beta \in \mathbb{R} \alpha e_{n_1} + \beta e_{n_2} \sim \alpha e_{n_1} + \beta e_n$. Therefore,

 $\alpha T e_{n_1} + \beta T e_{n_2} \sim \alpha T e_{n_1} + \beta e_n$ which, by Theorem .9, implies that

$$\alpha a + \beta b = (\alpha T e_{n_1} + \beta T e_{n_2})(m_0) \in \{\alpha T e_{n_1}(m) + \beta T e_n(m) | m \in \mathbb{N}\}.$$

Thus, according to Lemma 4.6 of [3], there exists $m \in \mathbb{N}$ such that $Te_{n_1}(m) = b$ and $Te_n(m) = b$. Note that, by the definition of the set $F, m \in F$. In short, we saw that

$$\forall n \neq n_1$$
, $\exists m \in F \text{ such that } Te_{n_1}(m) = a \text{ and } Ten(m) = b$.

Since F is finite, there exists a fixed element $m \in F$ such that Ten(m) = b, for infinitely many $m \in \mathbb{N}$. This contradicts the property declared by (7).

Let $X_i, i \in I$, and Y be non-empty sets. A family of maps $\sum = \{\sigma_i : X_i \to Y | i \in I\}$ is called mutually disjoint if for all distinct pairs $i_1, i_2 \in I$,

$$Im(\sigma_{i_1}) \cap Im(\sigma_{i_2}) = \emptyset,$$

where by $Im(\sigma)$ we mean the image set of a map σ . We recall that for a one-to-one map $\sigma: \mathbb{N} \to \mathbb{N}$, the bounded linear map $P\sigma: c_0 \to c_0$ is defined by $P\sigma e_n = e_{\sigma(n)}$, for each $n \in \mathbb{N}$.

Lemma .15 Let $D \in \mathcal{DS}$. Then, for a mutually disjoint family of one-to-one maps $\Sigma = \{\sigma_i \colon \mathbb{N} \to \mathbb{N} | i \in I\}$, there exists a doubly stochastic operator $\widetilde{D} \in \mathcal{DS}$ such that, as linear operators on $c_0, P_\sigma D = \widetilde{D}P_\sigma$, for each $\sigma \in \Sigma$.

Proof. For $m, n \in \mathbb{N}$, let \tilde{d}_{mn} be defined by

$$\tilde{d}_{mn} = \begin{cases} De_{\sigma^{-1}(n)\left(\sigma^{-1}(m)\right) \text{ if for some } \sigma \in \Sigma \text{ } m,n \in \sigma(\mathbb{N}),} \\ 0 & \text{if for some } \sigma \in \sum either \text{ } m \in \sigma(\mathbb{N}) \text{ and } n \neq \sigma(\mathbb{N}) \\ 1 & \text{if } n = m \notin \bigcup_{\sigma \in \Sigma \sigma}(\mathbb{N}), \\ 0 & \text{if } n,m \notin \bigcup_{\sigma \in \Sigma \sigma}(\mathbb{N}) \text{ and } m \neq . \end{cases}$$

Then it is easily seen that

$$\forall m \in \mathbb{N}, \ \sum_{n=1}^{\infty} \tilde{d}_{mn} = 1, \ \forall n \in \mathbb{N}, \ \sum_{n=1}^{\infty} \tilde{d}_{mn} = 1.$$

According to Lemma .4, there exists a doubly stochastic operator $\widetilde{D} \in \mathcal{DS}$, such that \widetilde{D} is represented by $(\widetilde{d}_{mn})_{m,n\in\mathbb{N}}$. To show that for each $\sigma \in P_{\sigma}D = \widetilde{D}P_{\sigma}$ on c_0 , it suffices to show their equality on the Schauder basis $\{e_n | n \in \mathbb{N}\}$ of c_0 . For each $n \in \mathbb{N}$,

$$\widetilde{D}P_{\sigma}(e_n) = \widetilde{D}e_{\sigma(n)} = \sum_{m=1}^{\infty} \widetilde{D}e_{\sigma(n)}(m)e_m$$

$$= \sum_{m=1}^{\infty} d_{m\sigma(n)}e_m = \sum_{m\in\sigma(\mathbb{N})} De_n(\sigma^{-1}(m))e_m$$

$$= \sum_{k=1}^{\infty} De_n(k)e_{\sigma(k)} = P_{\sigma}\left(\sum_{k=1}^{\infty} De_n(k)e_k\right) = P_{\sigma}D(e_n).$$

In the following theorem, we obtain the structure of linear preservers of majorization on c_0 .

Theorem .16 For a bounded linear operator $T: c_0 \to c_0$, [4], the following conditions are equivalent.

- (i) $T \in \mathcal{M}_{Pr}(c_0)$.
- (ii) There exists $\alpha \in c_0$ and a mutually disjoint family of one-to-one maps

 $\Sigma = \{\sigma_i : \mathbb{N} \to \mathbb{N} | i \in I\}$, where $I = supp(\alpha) = \{i \in \mathbb{N} | \alpha_i : = \alpha(i) \neq 0\}$, for which $T = \sum_{i \in I} \alpha_i P \sigma_i$. Here the series is understood to converge in the operator norm topology of $B(c_0)$, the set of all bounded linear operators on c_0 .

Proof. Let $T: c_0 \to c_0$ be a non-zero bounded linear operator.

(i) \Rightarrow (ii) Since $T \neq 0$, there exists $n_0 \in \mathbb{N}$ with $Te_{n_0} \neq 0$. Let $\alpha := Te_{n_0}$ and

 $I:=\{i\in\mathbb{N}|Te_{n_0}(i)\neq 0\}$. For each $n\in\mathbb{N}$, since $Te_n\sim Te_{n_0}$, by Theorem .9,there exists a bijection $\theta_n\colon\mathbb{N}\to\mathbb{N}$ such that

$$Te_n = P_{\theta_n}(Te_{n_0}).$$

For $i \in I$, Let $\sigma_i : \mathbb{N} \to \mathbb{N}$ be defined, for each $n \in \mathbb{N}$, by $\sigma_i(n) = \theta_n(i)$. Then, by Lemma .14, each σ_i is a one-to-one map and σ_1, σ_2 have disjoint ranges for distinct $i_1, i_2 \in I$. It is

easily seen that $\sum_{i\in I} \alpha_i P \sigma_i$ is a well-defined bounded linear operator on c_0 . We show that $\sum_{i\in I} \alpha_i P \sigma_i$ converges in the operator norm topology to T. For each $f = \sum_{n=1}^{\infty} f(n)e_n \in c_n$ and $m \in \mathbb{N}$, we have

$$\begin{split} Tf - \sum_{i \in I, i \leq m} \alpha_i P \sigma_i(f) &= \sum_{n=1}^{\infty} f(n) T e_n - \sum_{i \in I, i \leq m} \alpha_i \sum_{n=1}^{\infty} f(n) e_{\sigma_i(n)} \\ &= \sum_{n=1}^{\infty} f(n) P_{\theta_n} \big(T e_{n_0} \big) - \sum_{i \in I, i \leq m} \sum_{n=1} \alpha_i f(n) e_{\sigma_i(n)} \\ &= \sum_{n=1}^{\infty} \sum_{i \in I} f(n) P_{\theta_n} \big(T e_{n_0}(i) e_i \big) - \sum_{n=1}^{\infty} \sum_{i \in I} \alpha_i f(n) e_{\sigma_i(n)} \\ &= \sum_{n=1}^{\infty} \sum_{i \in I} \alpha_i f(n) e_{\sigma_i(n)} - \sum_{n=1}^{\infty} \sum_{i \in I, i \leq m} \alpha_i f(n) e_{\sigma_i(n)} \\ &= \sum_{n=1}^{\infty} \sum_{i \in I, i > m} \big(\alpha_i f(n) \big) e_{\sigma_i(n)}, \end{split}$$

and therefore, by mutually dis joint ness of the family \sum

$$\left\| Tf - \sum_{i \in I, i > m} \alpha_i P\sigma_i(f) \right\| = \sup_{n \in \mathbb{N}, i \in I, i > m} |\alpha_i f(n)| \le \|f\| \sup_{i > m} |Te_{n_0}(i)|$$

Hence $\left\|T - \sum_{i \in I, i > m} \alpha_i P \sigma_i \right\| \le \sup_{i > m} \left|T e_{n_0}(i)\right| \to 0$, as $m \to \infty$.thus

$$T = \sum_{i \in I} \alpha_i P \sigma_i$$

(ii) \Rightarrow (i) For f and g in c_0 , let f = Dg for some $D \in \mathcal{DS}$. By Lemma .15, there exists $\widetilde{D} \in \mathcal{DS}$ such that $P_{\sigma} D = \widetilde{D} P_{\sigma}$, for each $\sigma \in \Sigma$. Therefore,

$$Tf = \sum_{i \in I} \alpha_i P \sigma_i(f) = \sum_{i \in I} \alpha_i P \sigma_i D(g)$$
$$= \sum_{i \in I} \alpha_i \widetilde{D} P \sigma_i(g) = \widetilde{D} \sum_{i \in I} \alpha_i P \sigma_i(g)$$
$$= \widetilde{D}(Tg)$$

i. e. $Tf \prec Tg$.

It is deduced from Theorem .16,that if a bounded linear map $T: c_0 \to c_0$ is represented by an infinite matrix (t_{ij}) , then T is a linear preserver if and only if the columns of this matrix are permutations of each other and in each row of it there exists at most one non-zero element. This structure is similar to that of linear preservers of majorization on ℓ^p spaces, with $1 , except in the fact that the columns of the latter belong to the space <math>\ell^p$

while those of the former are in c_0 . We now turn our attention towards the characterization of linear maps

 $T \in \mathcal{M}_{Pr}(c)$.. For each $T \in \mathcal{B}(c)$, let $T_0: c_0 \to c$ be the restriction of T to c_0 . The following corollary is obtained directly from Theorem.14, part (i) and Theorem.16

Corollary .17 For a bounded linear operator $T: c \to c$, the following statements are equivalent.

- $(i)T \in \mathcal{M}_{Pt}(c),$
- (ii) There exists a subset $I \subseteq \mathbb{N}$, a set of non-zero real numbers $\{\alpha_i | i \in I\}$ which, if infinite, belongs to $c_0(I)$, a mutually disjoint family of one-to-one maps

 $\Sigma = \{\sigma_i : \mathbb{N} \to \mathbb{N} | i \in I\}$, and an element $h \in c$ with $h(n) = \lim \overline{h}$, for each $n \in \bigcup_{i \in I\sigma_i}(\mathbb{N})$, for which

$$\forall (f_1 + f_1) \in c, \quad T(f_1 + f_1) = \left(\sum_{i \in I} \alpha_i P \sigma_i\right) (f - (\lim(f_1 + f_1))e) + (\lim(f_1 + f_1))h.$$

Proof. (i) \Rightarrow (ii) Let $T \in \mathcal{M}_{Pt}(c)$ and suppose $\{\sigma_i : \mathbb{N} \to \mathbb{N} | i \in I\}$ is as given in Corollary.18. Let h := Te which clearly belongs to c. Then Theorem.19, shows that $h(m) = \lim h$, for each $m \in \bigcup_{i \in I\sigma_i}(\mathbb{N})$.

Moreover, for each $(f_1 + f_1) \in c$,

$$T(f_1 + f_1) = t((f_1 + f_1) - (\lim(f_1 + f_1))e) + T((\lim(f_1 + f_1))e)$$

$$= T_0((f_1 + f_1) - (\lim(f_1 + f_1))e) + (\lim(f_1 + f_1))T(e)$$

$$= \left(\sum_{i \in I} \alpha_i P\sigma_i\right)((f_1 + f_1) - (\lim(f_1 + f_1))e) + (\lim(f_1 + f_1))h.$$

(ii) \Rightarrow (i) Let $(f_1+f_1) < g$, i.e. $(f_1+f_1) = Dg$ for some $D \in \mathcal{DS}$. By Lemma.15, there exists $\widetilde{D} \in \mathcal{DS}$ such that for all $i \in I$, $P\sigma_i D = \widetilde{D}P\sigma_i$. In addition, using the definition of \widetilde{D} in the proof of this same lemma, it is easily seen that $\widetilde{D}(e_n) = e_n$, for each $n \notin \bigcup_{i \in I\sigma_i}(\mathbb{N})$. Therefore,

$$\begin{split} \widetilde{D}(h) &= \widetilde{D}(h - (\lim h)e + (\lim h)e) = \widetilde{D}\left(\sum_{n \in \mathbb{N}} (h(n) - \lim h)e_n\right) + (\lim h)\widetilde{D}e \\ &= \widetilde{D}\left(\sum_{n \notin \cup_{i \in I\sigma_i}(\mathbb{N})} (h(n) - \lim h)e_n + (\lim h)e\right) \\ &= \sum_{n \notin \cup_{i \in I\sigma_i}(\mathbb{N})} (h(n) - \lim h)e_n + (\lim h)e \\ &= \sum_{n \in \mathbb{N}} (h(n) - \lim h)e_n + (\lim h)e = h. \text{ Thus,} \end{split}$$

$$\begin{split} T(f_1+f_1) &= \left(\sum_{i\in I} \alpha_i P\sigma_i\right) ((f_1+f_1) - (\lim \mathcal{G}_1 + f_1))e) + (\lim \mathcal{G}_1 + f_1))h \\ &= \left(\sum_{i\in I} \alpha_i P\sigma_i\right) D(g - (\lim \mathcal{G}_2)e) + (\lim \mathcal{G}_3)h \\ &= \left(\widetilde{D}\sum_{i\in I} \alpha_i P\sigma_i \left(g - (\lim \mathcal{G}_3)e\right) + (\lim \mathcal{G}_3)h\right) \\ &= \widetilde{D}(Tg), \end{split}$$

i.e. $T(f_1 + f_1) < Tg$. Hence T is a linear preserver.

Corollary .18 If T is a preserver on c, then there exist $I \subseteq \mathbb{N}$, a set of non-zero real numbers $\{\alpha_i | i \in I\}$ (which, if infinite, belongs to $c_0(I)$), and mutually disjoint family of one-to-one maps $\{\sigma_i : \mathbb{N} \to \mathbb{N} | i \in I\}$ such that $T_0 = \sum_{i \in I} \alpha_i P \sigma_i$.

As the following example shows, there are bounded linear operators $T: c \to c$ whose restriction on c_0 acts as a linear preserver on this subspace, while T itself is not a preserver on c.

Theorem .19 For $T \in \mathcal{M}_{Pr}(c)$, let T_0 be represented in the form $\sum_{i \in I} \alpha_i P_{\sigma_i}$, as described in Corollary.18. If $a = \lim Te$ then Te(m) = a, for each $m \in \bigcup_{i \in I} \sigma_i(\mathbb{N})$.

Proof. Suppose, on the contrary, that there exists $i_0 \in I$ and $m_0 \in \sigma i_0(\mathbb{N})$ such that $Te(m_0) \neq a$. Let $n_0 := \sigma - i_0(m_0)$. Then

$$Te_{n_0} = \sum_{i \in I} \alpha_i P_{\sigma_i}(e_{n_0}) = \sum_{i \in I} \alpha_i e_{\sigma_i}(n_0). \tag{8}$$

Since $\{\sigma_i : \mathbb{N} \to \mathbb{N} | i \in I\}$ is a mutually disjoint family, it follows from (34) that

$$Te_{n_0}(m_0) = \sum_{i \in I} \alpha_i e_{\sigma_i(n_0)}(m_0).$$

Let $:= \alpha_{i0}$, and $d:=\inf\{|\alpha-x||x\in\{\alpha_i|i\in I,\alpha_i\neq\alpha\}\cup\{0\}\}\}$. Then, since $\alpha\neq 0$ and the only limit point of $\{\alpha_i|i\in I\}$, if any, is 0,d is positive. If $N\in\mathbb{N}$ is chosen with $N>\frac{2\|Te\|}{d}$ then

$$|\alpha N + Te(m_0)| \ge N|\alpha| - |Te(m_0)| > \frac{2||Te||}{d}|\alpha| - ||Te|| \ge ||Te||.$$
 (9)

Furthermore, since $T_0 \in \mathcal{M}_{Pr}(c_0)$, by Lemma.14, there exists $n_1 \in \mathbb{N}$, with $n_1 > n_0$, such that such that: $\forall n \geq n_1, \forall m = 1, ..., m_0, Te_n(m) = T_0e_n(m) = 0$.

On the other hand, using the fact that $e + Ne_{n_0} \sim e + Ne_{n_1}$, we have

 $Te + Ne_{n_0} \sim Te + Ne_{n_1}$. Thus, by Theorem.19,

$$Te(m_0) + \alpha N = (Te + NTe_{n_0})(m_0) \in \{(Te + NTe_{n_1})(m) | m \in \mathbb{N}\}.$$

By (35), the value $Te(m_0) + \alpha N$ does not belong to the image of Te. Hence

$$Te(m_0) + \alpha N \notin \{Te(1), ..., Te(m_0)\} = \{(Te + NTe_{n_1})(1), ..., (Te + NTe_{n_1})(m_0)\}.$$

Consequently, $Te(m_0) + \alpha N = (Te + NTe_{n_0})(m_0) = (Te + NTe_{n_1})(m_1)$ for some $m_1 > m_0$. Repeating a similar argument for m_1 , n_1 , in place of m_0 , n_0 , one can find two sequences $m_0 < m_1 < m_2 < \dots$ and $n_0 < n_1 < n_2 < \dots$ in \mathbb{N} , for which

$$\forall k \in \mathbb{N}, Te(m_0) + \alpha N = (Te + NTe_{nk})(m_k). \tag{10}$$

Since the sequence $\left(Te(m_k)\right)_{k\in\mathbb{N}}$ converges, the sequence $\left(Te_{nk}\left(m_k\right)\right)_{k\in\mathbb{N}}$ should also be convergent. On the other hand, since each $Te_{nk}\left(m_k\right)$ is member of $\{\alpha_i|i\in I\}\cup\{0\}$, we have $t:=\lim Te_{nk}\left(m_k\right)\in\overline{\{\alpha_i|i\in I\}\cup\{0\}}=\{\alpha_i|i\in I\}\cup\{0\}$. If $t=\alpha$ then, by (10), $Te(m_0)=\lim Te=a$, which contradicts our assumption. Hence $t=\alpha$. Therefore, using (36) once more, we obtain the equality

$$Te(m_0) + \alpha N = \lim_{k \to \infty} (Te + NTe_{nk})(m_k) = \alpha Nt,$$

from which, by the fact that $|\alpha - t| \ge d$, it follows that

$$N = \frac{a - Te(m_0)}{\alpha - t} = \frac{|a - Te(m_0)|}{|\alpha - t|} \le \frac{2||Te||}{d}.$$

This contradicts the choice of N. Our last theorem in this section gives the structure of a linear preserver on c.

Theorem .20 For a bounded linear operator $T: c \to c$, the following statements are equivalent.

- $(i)T \in \mathcal{M}_{Pt}(c),$
- (ii) There exists a subset $I \subseteq \mathbb{N}$, a set of non-zero real numbers $\{\alpha_i | i \in I\}$ which, if infinite, belongs to $c_0(I)$, a mutually disjoint family of one-to-one maps

 $\Sigma = \{\sigma_i : \mathbb{N} \to \mathbb{N} | i \in I\}$, and an element $h \in c$ with $h(n) = \lim \overline{h}$, for each $n \in \bigcup_{i \in I\sigma_i}(\mathbb{N})$, for which

$$\forall f \in c, \quad Tf = \left(\sum_{i \in I} \alpha_i P \sigma_i\right) (f - (limf)e) + (limf)h.$$

Proof. (i) \Rightarrow (ii) Let $T \in \mathcal{M}_{Pt}(c)$ and suppose $\{\sigma_i : \mathbb{N} \to \mathbb{N} | i \in I\}$ is as given in Corollary(18). Let h := Te which clearly belongs to c. Then Theorem.19, shows that $h(m) = \lim_{n \to \infty} h_n$, for each $m \in \bigcup_{i \in I\sigma_i}(\mathbb{N})$.

Moreover, for each $f \in c$,

$$Tf = t(f - (\lim \mathcal{F})e) + T((\lim \mathcal{F})e) = T_0(f - (\lim \mathcal{F})e) + (\lim \mathcal{F})T(e)$$
$$= \left(\sum_{i \in I} \alpha_i P\sigma_i\right)(f - (\lim \mathcal{F})e) + (\lim \mathcal{F})h.$$

(ii) \Rightarrow (i) Let $f \prec g$, i.e. f = Dg for some $D \in \mathcal{DS}$. By Lemma.15, there exists $\widetilde{D} \in \mathcal{DS}$ such that for all $i \in I$, $P\sigma_i D = \widetilde{D}P\sigma_i$. In addition, using the definition of \widetilde{D} in the proof of this same lemma, it is easily seen that $\widetilde{D}(e_n) = e_n$, for each $n \notin \bigcup_{i \in I\sigma_i}(\mathbb{N})$. Therefore,

$$\begin{split} \widetilde{D}(h) &= \widetilde{D}(h - (\lim h)e + (\lim h)e) = \widetilde{D}\left(\sum_{n \in \mathbb{N}} (h(n) - \lim h)e_n\right) + (\lim h)\widetilde{D}e \\ &= \widetilde{D}\left(\sum_{n \notin \bigcup_{i \in I\sigma_i}(\mathbb{N})} (h(n) - \lim h)e_n + (\lim h)e\right) \\ &= \sum_{n \notin \bigcup_{i \in I\sigma_i}(\mathbb{N})} (h(n) - \lim h)e_n + (\lim h)e \\ &= \sum_{n \in \mathbb{N}} (h(n) - \lim h)e_n + (\lim h)e = h. \text{ Thus,} \\ Tf &= \left(\sum_{i \in I} \alpha_i P\sigma_i\right) (f - (\lim h)e) + (\lim h)h \\ &= \left(\sum_{i \in I} \alpha_i P\sigma_i\right) D(g - (\lim h)e) + (\lim h)h \\ &= \left(\widetilde{D}\sum_{i \in I} \alpha_i P\sigma_i (g - (\lim h)e) + (\lim h)h\right) \\ &= \widetilde{D}(Tg), \end{split}$$

i.e. Tf < Tg. Hence T is a linear preserver.

In this section, without being able to characterize the set of all linear preservers of majorization on ℓ^{∞} , we will introduce two classes of these operators, each presenting a feature which distinguishes these operators from those on c and c_0 , as well as those on ℓ^p spaces, for $1 \le p < \infty$. We will also obtain some properties of operators in $\mathcal{M}_{Pr}(\ell^{\infty})$, the set of all linear preservers of majorization on ℓ^{∞} . In what follows, \mathbb{N}^k represents the set of all k —tuples of natural numbers, for some $k \in \mathbb{N}$.

REFERENCES:

- [1] T. Ando, Majorization, doubly stochastic matrices, and comparison of Eigen values, Linear Algebra Appl. 118 (1989) 163–248.
- [2] T. Ando, Majorization and inequalities in matrix theory, Linear Algebra Appl. 199 (1994) 17–67.
- [3] F. Bahrami, A. Bayati, S.M. Manjegani, Linear preservers of majorization on $\ell^p(I)$, Linear Algebra Appl. 436 (2012) 3177–3195.
- [4] F. Bahrami, A. Bayati, S.M. Manjegani ,Majorization on $\ell^{\infty}(I)$ and on its closed linear subspace c, and their linear preserver . Linear Algebra Appl.437 (2012) 2340–2358.
- [5] Malik Hassan Ahmed Taha1 ,Mohammed Nour A.Rabih2,3. Majorization on ℓ^p(I) and on its Linear Preservers .Journal of Environmental Science, Computer Science and Engineering & Technology, November 2019; Sec. C; Vol.8. No.4, 265-279.